Synthesis of *erythro* and *threo* Furanoid Glycals Using 5endo-trig Selenoetherification as Key Step ## Fernando Bravo, Mohamed Kassou, Sergio Castillón* Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, Pça. Imperial Tarraco, 1, 43005 Tarragona, Spain Received 2 October 1998; revised 25 November 1998; accepted 30 November 1998 ### Abstract Differently protected *erythro* and *threo* furanoid glycals were synthesised from 4-pentene-1,2,3-triol, through selenium induced 5-endo-trig cyclization and selenoxide elimination. © 1999 Elsevier Science Ltd. All rights reserved. The use of glycals as important glycosyl donors has been extensively discussed in the literature. Indeed, a number of recent articles describe them as important precursors of oligosaccharides, C-glycosides and C-nucleosides, nucleosides and others. Both pyranoid and furanoid glycals are usually obtained by reductive elimination of appropriately activated compounds. Ireland's method, which starts from 1-halo-2,3-O-isopropylidenefuranoses and Li/NH₃(1) as reducing agent, has been widely used for the synthesis of differently protected furanoid glycals of erythro configuration (Scheme 1, via a). Some of the drawbacks of this method are that many useful protecting groups are not stable in the strongly reducing conditions of the reaction, and that glycals of threo configuration require a long multistep synthesis. In attempts to overcome these limitations, several new procedures based on elimination reactions from 1-O-mesyl furanoses¹⁰ (Scheme 1, via b, X=OMs), or thymidine¹¹ (Scheme 1, # Scheme 1 RO OR' X= OMs ref. 10 X= β-Thy ref. 11 X= Se(O)Ph ref. 14 RO OR' Nef. 10 OR' Nef. 11 OR' Nef. 11 OR' OR' Nef. 12 via b, X=β-Thy), dedihydroxylation of furanoses with L/PPh₃/imidazole¹² (Scheme 1, via c) or 5-endo-dig cyclization of 4-pentyne-1,2-diols catalysed by molybdenum complexes¹³ have recently been described. In particular, we reported an efficient procedure for synthesising furanoid glycals from 1-phenylselenofuranoses, through oxidation and thermal elimination of the selenoxide generated at low temperature¹⁴ (Scheme 1, via b, X=Se(O)Ph). This procedure was compatible with the presence of a wide number of protecting groups. We assumed that the synthesis of glycals could also proceed if the phenylselenenyl group were located at position 4 of the tetrahydrofuran ring (Scheme 1, via d). These seleno derivatives, in turn, could be obtained from protected 4-pentene-1,2,3-triols. a) NaH, BnBr; separation of isomers; b) H*, MeOH; c) To obtain 5 and 7: 1) Bu₂SnO, Toluene, 4 Å M.S.; 2) BnBr, Bu₄NBr; d) To obtain 6 and 8: TBDPSCI, imidazole, DMF; e) N-PSP, CSA, CH₂CI₂ With this purpose, we synthesised alkenols 5-8 from *D*-glyceraldehyde 1, which is accessible from *D*-mannitol¹⁵ (Scheme 2). Treating 1 with vinylmagnesium chloride¹⁶ in ether/THF gave a mixture of alcohols 2 in a ratio of nearly 1:1. It should be pointed out that the *syn* or *anti* isomer can be obtained selectively with the aid of titanium or zinc complexes.¹⁷ Protection of the free alcohol with benzyl bromide, followed by isopropylidene cleavage, gave alcohols 3 and 4¹⁸ (Scheme 2). The primary hydroxyl group was selectively protected by reacting 3 and 4 with benzyl bromide via the stannylidene procedure¹⁹ to give alcohols 5 and 7, and with TBDPSCl to obtain alcohols 6 and 8 (Scheme 2). Previous reports on cyclizations of related compounds with iodine electrophiles showed a greater preference for the 5-exo-trig cyclization, even when the hydroxyl that undergoes cyclization is protected with an ether function. However, the reaction of dibenzyl derivatives 5 and 7 with N-phenylselenophthalimide (N-PSP) in the presence of camphorsulfonic acid (CSA)²¹ preferentially gave products 9 (ratio of isomers 1:1) and 11 (ratio 7:4) through unusual 5-endo-trig cyclization. Nevertheless, cyclization of the primary oxygen also took place and provided minor amounts of the 6-endo-trig and 5-exo-trig products. We assumed that the stability of the benzyl cation may be the reason for it being released when there is no good nucleophile, thus allowing cyclization through oxygen 1. These side reactions were suppressed by using tert-butyldiphenylsilyl ether as protecting group, and the only products | Entry | 2-phenylselenenyl derivative | Conditions* | Yield | Glycal | |-------|------------------------------|-------------|-------|-------------| | 1 | BnO O Seph 9 | A | 62% | BnO OBn 13 | | 2 | TBDPSO 70 710 | A | 82% | TBDPSO 0 14 | | 3 | OBn SePh | В | 95% | OBn 14 | | 4 | BnO OBn
SePh | A | 74% | BnO OBn | | 5 | TBDPSO7 OBn | A | 65% | TBDPSO—OBn | | 6 | SePh | В | 82% | 16 | **Table 1.** Formation of *erythro* and *threo* furanoid glycals that could be isolated after the selenoetherification of 6 and 8 were 10 (ratio 5:4) and 12 (ratio 1:1), respectively (Scheme 2). The first attempts to generate glycals were made by oxidizing each diastereoisomer of **9** and **11** with H_2O_2 . The selenoxide formed slowly (6-8 hours), but no glycal formation was observed. In this case, the elimination of the formed selenoxide must proceed towards a carbon that supports an oxygen atom, which explains the stability of the selenoxide. Treating the selenoxide in refluxing dichloromethane did not give the corresponding glycal, and standing in boiling dichloroethane resulted in decomposition. So we tried the conditions we used in our previous synthesis of glycals¹⁴ (BuOOH, NEtPr₂, Ti(OPr)₄, CH₂Cl₂, Scheme 1, via b, X=Se(O)Ph). Under these conditions, selenoxide formed rapidly (ca. 15 minutes), but again no evolution to the glycal was observed. However, after prolonged heating in dichloromethane, glycals were isolated from the different isomers in good yields (see Table 1). The 2,3-unsaturated products, which can be formed by syn elimination of the phenylselenenyl group under oxidative conditions, depending on its relative stereochemistry, were not observed. Therefore, we concluded that isomer separation was not necessary. Treating mixtures 10 and 12 under these conditions gave the respective glycals (Table 1). The excessively long time required for the formation of the glycal was significantly reduced when dichloromethane was replaced by dichloroethane, and this led to excellent yields of glycals. In conclusion, glycals of both *erythro* and *threo* configuration have been efficiently synthesised by oxidizing 4-phenylselenenyltetrahydrofurans. These products have been obtained through an unusual 5-endo-trig selenoetherification of 4-pentene-1,2,3-triols, which are obtained from inexpensive *D*-mannitol. a) Formation of selenoxide carried out by adding 'BuOOH (2.5 eq), NEt'Pr₂ (1.7 eq.) and Ti(O'Pr)₄ (1 eq.) in CH₂Cl₂ or ClCH₂CH₂Cl. Conditions of thermal elimination: (A) Reflux in CH₂Cl₃ (48h; (B) Reflux in ClCH₂CH₄Cl, 4h. Acknowledgements: We thank DGICYT (Ministerio de Educación y Cultura, Spain) for finantial support and V. E. Márquez (NIH, Bethesda) for critical reading. FB thanks CIRIT (Generalitat de Catalunya) for a grant. ### **References and Notes** - a) Hanessian, S. "Total Synthesis of Natural Products: The Chiron Approach" Pergamon Press, Oxford, 1983. b) Hale, K. J.; Richardson, A. C. "The Chemistry of Natural Products" Ed. R. H. Thomson, Chapman&Hall, London, 2nd edition, 1993, 1-59. - a) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. Engl. 1996, 35, 1380. b) Roberge, J. Y.; Beebe, X.; Danishefsky, S. J. J. Am. Chem. Soc. 1998, 120, 3915. c) McDonald, F. E.; Zhu, H. Y. H. J. Am. Chem. Soc. 1998, 120, 4246 - a) Thorn, S. N.; Gallagher, T. Synlett 1996, 856. b) Hosokawa, S.; Kirschbaum, B.; Isobe, M. Tetrahedron Lett. 1998, 39, 1917. - a) Erion, M. D.; Rydzewski, R. M. Nucleosides & Nucleotides 1997, 16, 315. b) Walker II, J. A.; Chen, J. J.; Hinkley, J. M.; Wise, D. S.; Townsend, L. B. Nucleosides & Nucleotides 1997, 16, 1999. - a) Robles, R.; Rodríguez, C.; Izquierdo, I.; Plaza, M. T.; Mota, A. Tetrahedron: Asymmetry 1997, 8, 2959. b) Díaz, Y.; El-Laghdach, A.; Castillón, S. Tetrahedron 1997, 53, 10921; c) Díaz, Y.; El-Laghdach, A.; Matheu, M. I., Castillón, S. J. Org. Chem. 1997, 62, 1501; d) Chao, Q.; Zhang, J.; Pickering, L.; Jahnke, T. S.; Nair, V. Tetrahedron 1998, 54, 3113. - 6. For use in cyclopropanation and ring expansion see: Ramana, C. V.; Murali, R.; Nagarajan, M. J. Org. Chem., 1997, 62, 7694. - 7. For use in a novel class of glycosydation based in a [4+2] cycloaddition see: a) Capozzi, G.; Dios, A.; Frank, R. W.; Geer, A.; Marzabadi, C.; Menichetti, S.; Nativi, C.; Tamarez, M. Angew. Chem., Int. Ed. Engl. 1996, 35, 777; b) Frank, R. W.; Marzabadi, C. H. J. Org. Chem. 1998, 63, 2197. - 8. For the synthesis of thionucleosides from thioglycals see: Haraguchi, K.; Nishikawa, A.; Sasakura, E; Tanaka, H.; Nakamura, K. T.; Miyasaka, T. Tetrahedron Lett. 1998, 39, 3713. - 9. Ireland, R. E.; Wilcox, C. S.; Thaisrivongs, S. J. Org. Chem. 1978, 43, 786. - 10. Walker, J. A.; Chen, J. J.; Wise, D. S.; Townsend, L. B. J. Org. Chem. 1996, 61, 2219. - 11. Cameron, M. A.; Cush, S. B.; Hammer, R. P. J. Org. Chem. 1997, 62, 9065. - 12. Robles, R.; Rodríguez, C.; Izquierdo, I.; Plaza, M. T. Carbohydr. Res. 1997, 300, 375. - 13. McDonald, F. E.; Gleason, M. M. J. Am. Chem. Soc., 1996 118, 6648. - 14. Kassou, M.; Castillón, S. Tetrahedron Lett. 1994, 35, 5513. - Schmid, C. R.; Bryant, J. D.; Dowlatzedah, M.; Phillips, J. L.; Prather, D. E.; Schantz, R. D.; Sear, N. L.; Vianco, C. S. J. Org. Chem. 1991, 56, 4056. - 16. Walton, D. J. Can. J. Chem. 1967, 45, 2921. - 17. Mulzer, J.; Angermann, A. Tetrahedron Lett. 1983, 24, 2843. - 18. ¹H NMR spectral data for compounds (3) and (4) taken in CDCl₃ at 300 MHz: (3) 7.35 (m, 5H, Ph), 5.82 (ddd, 1H, $J_{4,5}=17.3$ Hz, $J_{4,5}=10.4$ Hz, $J_{3,4}=7.7$ Hz, H-4), 5.40 (dt, 1H, $J_{5,5}\approx J_{3,5}=0.8$ Hz, H-5), 5.36 (dt, 1H, $J_{5,5}\approx J_{3,5}=0.9$ Hz, H-5'), 4.63 (d, 1H, $J_{AB}=11.7$ Hz, CH,Ph), 4.36 (d, 1H, $J_{AB}=11.7$ Hz, CH,Ph), 3.89 (dd, 1H, $J_{3,5}=4.0$ Hz, H-3), 3.8-3.6 (m, 3H, H-1, H-1', H-2), 3.1-2.5 (bs, 2H, 2xOH); (4) 7.4-7.2 (m, 5H, Ph), 5.77 (ddd, 1H, $J_{4,5}=16.8$ Hz, $J_{4,5}=11.0$ Hz, $J_{3,4}=7.7$ Hz, H-4), 5.39 (ddd, 1H, $J_{3,5}=1.6$ Hz, $J_{3,5}=0.6$ Hz, H-5), 5.37 (ddd, 1H, $J_{3,5}=0.8$ Hz, H-5'), 4.65 (d, 1H, $J_{AB}=11.5$ Hz, CH,Ph), 4.34 (d, 1H, $J_{AB}=11.5$ Hz, CH,Ph), 3.84 (t, 1H, $J_{2,3}\approx J_{3,4}\approx 7.7$ Hz, H-3), 3.8-3.5 (m, 3H, H-1, H-1', H-2), 3.0 (bs, 1H, OH), 2.8 (bs, 1H, OH). - 19. David, S.; Thieffry, A.; Veyrières, A. J. Chem. Soc., Perkin Trans. 1 1979, 1568. - See for instance: a) Nicotra, F.; Panza, L.; Ronchetti, F.; Russo, G.; Toma, L. Carbohydr. Res. 1987, 103, 49; b) Jung, M. E.; Nichols, C. J. J. Org. Chem. 1998, 63, 347. - 21. Nicolaou, K. C.; Claremon, D. A.; Barnette, W. E.; Seitz, S. P. J. Am. Chem. Soc. 1979, 101, 3704. - 22. 5-endo-trig cyclization was confirmed in base to DEPT experiments, which showed a methine carbon over 40 ppm that corresponds to C-Se. - 23. Reitz, A. B.; Nortey, S. O.; Maryanoff, B. E.; Liotta, D.; Monahan III, R. J. Org. Chem. 1987, 52, 4191. - Beach, J.W.; Kim, H. O.; Jeong, L. S.; Nampalli, S.; Islam, Q.; Ahn, S. K.; Babu, J. R.; Chu, C. K. J. Org. Chem. 1992, 57, 3887. - 25. Paquette, L. A.; Ezquerra, J.; He, W. J. Org. Chem. 1995, 60, 1435. - 26. Sharpless, K. B.; Young, M. W.; Lauer, R. F. Tetrahedron Lett. 1973, 1979.